Step of Proof: p-fun-exp-add1-sq
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-fun-exp-add1-sq
:
A
:Type,
f
:(
A
(
A
+ Top)),
x
:
A
,
n
:
.
(
can-apply(
f
;
x
))
((
f
^
n
+1(
x
)) ~ (
f
^
n
(do-apply(
f
;
x
))))
latex
by (Unfolds ``can-apply do-apply`` ( 0)
)
CollapseTHEN ((UnivCD)
CollapseTHENA (Auto
)
)
C
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
f
:
A
(
A
+ Top)
C1:
3.
x
:
A
C1:
4.
n
:
C1:
5.
isl(
f
(
x
))
C1:
(
f
^
n
+1(
x
)) ~ (
f
^
n
(outl(
f
(
x
))))
C
.
Definitions
can-apply(
f
;
x
)
,
do-apply(
f
;
x
)
,
P
Q
,
b
,
isl(
x
)
,
x
:
A
.
B
(
x
)
,
f
(
a
)
,
,
x
:
A
B
(
x
)
,
left
+
right
,
Top
,
t
T
,
Type
Lemmas
assert
wf
,
isl
wf
,
nat
wf
,
top
wf
origin